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Abstract

It is proposed to model materials with self-similar structure by a continuum sequence of continua of increasing scales
each determined by its own size of the averaging volume element. The scaling is represented by power laws with the
exponents determined by the microstructure, but not necessarily by the material fractal dimension. The scaling laws
for tensors are shown to be always isotropic (the same exponent for all non-zero components) with the prefactors
accounting for anisotropy. For materials with self-similar distributions of pores, cracks and rigid inclusions the scaling
laws for elastic characteristics were determined using the differential self-consistent method. Stresses are defined in each
continuum (and are measured in conventional units of stress) with the scaling law controlling the transition from one
continuum to another, i.e. from one stress field to another. In the case of strong self-similarity the scaling exponent for
the stress field is uniform, coincides with the one for the average (nominal) stress and is controlled by the sectional frac-
tal dimension of the material. Within each continuum the stress concentrators—point force, dislocation, semi-infinite
crack—produce conventional stress singularities. However, as the point of singularity is approached, the transition to
finer continua is necessary, resulting, in some cases, in apparent non-conventional exponent of the stress increase.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A distinctive property of many materials is the presence of internal microstructure containing sets of
characteristic lengths in a range of scales (for instance, in concrete at least three markedly different scales
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are recognised, van Mier, 1992). Explicit modelling of the mechanical behaviour of such materials requires
considerable computational resources. A radical simplification is achieved in the cases when the microstruc-
ture can be considered as self-similar, at least within a range of scales.

The self-similarity, i.e. the absence of a characteristic scale is typical for the microstructure at a critical
stage, or at the phase transition such as the cluster structure at the percolation threshold or cellular autom-
ata structures (e.g., Bak and Tang, 1989; Chopard and Droz, 1998). Evidence of self-similar microstructures
is found in metals (e.g., Mandelbrot et al., 1984), composites (e.g., Skjeltorp, 1988; Kjems and Posselt,
1988), porous rocks (e.g., Katz and Thompson, 1985), concrete and mortar (e.g., Issa and Hammad,
1993; Carpinteri, 1994; Carpinteri et al., 1995; Bazant, 1997), the loading-induced distributions of defects
and dislocations (see Weiss and Marsan, 2003 and references therein). Gutenberg-Richter law is perceived
as strong evidence in favour of the hypothesis of self-similarity of the Earth crust structure. Additional evi-
dence is provided by the self-similarity in the distribution and properties of macroscopic fractures and frag-
ments in rock masses (e.g., Hartmann, 1969; Scholz and Aviles, 1986; Gelikman and Pisarenko, 1989;
Scholz, 1990; Redner, 1990; Olding, 1992; Barton and Zoback, 1992; Turcotte, 1993; Gillespie et al.,
1993; Yamamoto et al., 1993; Nagahama, 1993; Dubois, 1998). Self-similar distribution of particles is also
observed in the gouge of faults (see Sammis, 1997 and literature therein) and in crushed soils, Bolton and
Dowell (1977). The results of the study of distribution of preferential sizes of breakups and fractures
(Sadovskiy, 1983) suggest the existence of self-similarity in the distribution modes over a wide range of
scales, from microns to thousands of kilometres.

Different mechanisms were suggested of either self-similarity itself or its manifestations. King and Sam-
mis (1992) and Sammis (1997) put forward the fractal fragmentation as a mechanism of producing self-sim-
ilar distributions of particles. They argue that if the particles have similar sizes, it is more likely that due to
the slight size mismatch the reference particle will only be contacted and therefore loaded at two opposite
points creating tensile stresses on the line connecting these points. If however the reference particle contacts
particles of markedly different sizes, there will be more contacts and the load will be more distributed thus
suppressing high tensile stresses. As a result, neighbouring particles of similar sizes are more prone to fail-
ure and will not survive leaving only neighbours of very different sizes. Bolton and Dowell (1977) proposed
a model that explains the observed power dependence between the bulk modulus of an array of soil par-
ticles and pressure based on the Herzian-type contacts between the particles. This model is remarkable
in that it predicts a power law—the conventional indicator of fractality—in a system that itself does not
have to be self-similar. This is perhaps another indication that caution has to be exercised when analysing
apparently fractal manifestations of natural objects. Dyskin (2000, 2001, 2002a) proposed a mechanism of
developing self-similar crack distributions based on crack interaction leading to a distribution of crack sizes
with the distribution function proportional to the inverse fourth power of the crack radius.

Attempts were made to analyse the deformation and fracture behaviour of fractal bodies by relating the
elastic (e.g., Balankin, 1992; Cherepanov et al., 1995) and fracture (e.g., Bazant, 1993; Mosolov, 1993;
Carpinteri, 1994) properties to the fractal dimension of the material i.e. to its geometric property. However,
if one considers a material with ideal cracks, its fractal dimension will be exactly equal to 3, since cracks
have no internal volume. Thus from the point of view of fractal approach the cracked material is indistin-
guishable from a solid material, while their deformation and strength properties will obviously be different
(note that multiscale crack distributions of sufficiently high concentration can considerably reduce the elas-
tic moduli, potentially to zero values). This indicates that there is no direct relationship between the
mechanical scaling laws and fractal dimensions.

Balankin (1992) (see also Cherepanov et al., 1995) proposed a mechanics of fractal objects assuming: (1)
external loading creates “a unique new characteristic length” and (2) in the process of deformation the
material retains its self similarity. Assumption (1) apparently means that the material looses its self similar-
ity, which contradicts assumption (2). Carpinteri (1994) determined the scaling law for nominal stress ¢ act-
ing on an elementary area S of the self-similar material based on the force balance equation,
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o(b)S(h) = F = const, where b is the scale. If the area scales as S o b, where D, < 2 is the fractal dimension
of the area (sectional fractal dimension of the material), then the nominal stress scales as o o %72 indef-
initely increasing with decreasing scale. The characteristic feature of this approach is that the self-similar
nominal stress is measured in non-traditional units, Nm~?s. Carpenteri and Cornetti (2002) extended this
approach and introduced strain having non-conventional units. Then the equations of equilibrium and the
strain definition were obtained by replacing the conventional derivatives of continuum mechanics with local
fractional derivatives associated with the fractal dimension of the material. In this approach the elastic
modulus becomes scale independent. Another approach to modelling of overall mechanical behaviour of
materials with fractal microstructure or elastic networks and lattices is to introduce scaling to their prop-
erties, for example elastic moduli (e.g., Herrmann and Roux, 1990; Zosimov and Lyamishev, 1995).

A remark should be made on the non-traditional units determined by the material fractal dimension.
Firstly, if different pars of the material have different fractal dimensions the stress and strain will be ex-
pressed in non-uniform units. Secondly, the scale invariance of balance equations does not necessarily im-
ply non-traditional units. Indeed, the force balance equation for example being rewritten as F = a(bo)(b/
bo) P S(bo)(b/by)P: allows stress a(by) and area S(bo) to have traditional units.

A popular approach to introduce fractal modelling in fracture mechanics is to consider the fracture proc-
ess in the frame of the theory of percolation interpreting the macrocrack as an infinite cluster of connected
defects (e.g., Sahimi and Goddard, 1986; Ostoja-Starwezki, 1989; Nishiuma et al., 1996; Chakrabati and
Benguigui, 1997; Mishnaevsky, 1998) or as a result of diffusion-limited aggregation (DLA) (e.g., Herrmann,
1989; Louis and Guinea, 1989). It should however be noted that only in 2-D picture these structures actu-
ally break the plane. In real 3-D world the formation of such structures does not affect the connectedness of
the body.

A number of papers considered crack propagation in fractal materials by extending the classical Fracture
Mechanics concepts for straight cracks to the cracks with fractal surface. Mosolov (1991a) and Gol’dstein
and Mosolov (1991) analysed the propagation of a mode I crack with fractal surface (i.e. its 2-D version,
the crack with fractal profile) from the point of view of Griffith criterion. It was postulated that the crack
propagates self-similarly and that the energy released during a step, /, of crack propagation should be spent
on forming the fracture surface, which being a fractal of a dimension D > 1 has the actual length o /°. This
leads to the conclusion that the stress distribution at the crack tip has to have singularity />~?”? Therefore
if the newly developed fracture surface has the (sectional) fractal dimension D > 1 the crack-tip stress dis-
tribution must be weaker than the conventional square root singularity. In 3-D case, for disk-like cracks
with surfaces of fractal dimension 2 < D < 3, the singularity exponent becomes (3—D)/2. Gol’dstein and
Mosolov (1991) also considered the case of quasi-brittle fracture assuming that the dissipative process is
self-similar with its own exponent, 5. In this case the stress singularity was found to be even lower with
the exponent (2—D—p)/2. The arguments of this kind were used in a number of other publications (e.g.,
Borodich, 1992, 1994; Chakrabati and Benguigui, 1997). Further development of this approach involves
the consideration of fractal microcracking (Borodich, 1997) at the crack tip self-affine fracture surface
(e.g., Balankin, 1997; Weiss, 2001) and the consideration of fractal cracks in a Cosserat continuum (Yavari
et al., 2002a)—a continuum whose points possess rotational degrees of freedom in addition to conventional
translational ones. Xie and Sanderson (1995) and Maximov (1998) modelled dynamic propagation of frac-
tal cracks using classical results for dynamic propagation of straight cracks.

Bazant (1997) modelled the size effect in strength by considering fracture in plates of a specified thick-
ness, d, and of similar sizes (characteristic dimensions) D. Within a certain range of scales failure is sup-
posed to be caused by a crack represented by a single fractal curve with dimension dr. The apparent
(smooth or projected) crack length is assumed to be proportional to the sample size, D. At larger scales,
failure proceeds in a non-fractal regime as a propagation of a conventional crack with non-fractal (rectified)
surface. For small cracks (lengths not exceeding the inherent defect size) and dy > 1 this gives unconven-
tional increase in strength with the sample size increase.
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Mosolov and Borodich (1992) attempted to use the concept of fractal fracture surface to explain brittle
fracture in compression, i.e. the experimentally observed fact that cracks can grow parallel to the direction
of compression (if the crack is a cut in a homogeneous material, compression parallel to the crack does not
affect it at all, so there is no mechanism of its growth). Their explanation eventually used the expression for
the stress distribution at the crack tip (Eq. (5) in the cited paper) borrowed from the works which consider
the crack propagation under perpendicular tensile load. Yavari et al. (2002b) extended this approach and
introduced further fracture modes related to the application of normal stress in the directions parallel to the
“main crack plane”. ' However, normal loading along a rough surface only creates fluctuations of the
stress component normal to the “main crack plane”. The mean value of this stress is zero (due to equilib-
rium), while the effect of the fluctuations is localised within an area of the size of asperities (in the case of
fractal cracks it is the upper cut-off at most). It is not clear whether such fine scale fluctuations are able to
produce the stress concentrations at the crack tip.

The formulation of fractal fracture criteria leads to fracture toughness, Kfc (Gol’dstein and Mosolov,
1991) or J-integral (e.g., Mosolov, 1991b; Rupnowski, 2001) or fracture energy (e.g., Carpinteri, 1994;
Bazant, 1997) being of variable units. Their values increase with the fractal dimension, for instance
InK!, depends linearly on D-1. Attempts to verify this dependence experimentally (Mecholsky et al.,
1989; Issa et al., 1993; Saouma and Barton, 1994) produced, according to Saouma and Barton (1994), a
low goodness of fit.

It should be noted that these non-conventional stress singularities are prescribed by the energy consid-
erations under the assumption of self-similarity of crack growth and the fractal nature of the fracture sur-
face. The corresponding exponents have to be determined by examining the fracture surface (post-mortem
examination, Saouma and Barton, 1994), no equations are formulated for calculating these exponents from
the microstructural properties. This is essentially a back analysis, from the effect to the cause. A close exam-
ination of the proposed concept shows that if the loading applied to the crack is marginally smaller than the
critical one (i.e., the one required for the crack propagation), the stress singularity should obviously have
the same unconventional singularity whose exponent is determined by the fractal properties of the fracture
surface that does not yet exist. The defenders of this approach may well argue that it is determined by the
existing crack surface which, in the virtue of the postulated self-similar nature of crack growth has the same
fractal characteristics as the fracture surface to be. However, the employed energy reasoning is insensitive
to the existing crack surface as long as the latter does not have characteristic sizes. The same procedure
could for instance be applied to the case of a conventional straight crack surface yielding the unconven-
tional singularities, which would be in direct contradiction to the classical Fracture Mechanics. Further-
more, the assumption that the energy released during a strep of fractal crack propagation is
proportional to the measure of the step was not confirmed by direct finite element simulations, Rupnowski
(2001). Interestingly, the correspondence between the computed values of J integral and the measure is the
closer the smoother the crack trajectory. Apparently, they will coincide for a straight crack, as implied by
the classical Fracture Mechanics.

The above approaches are concerned with scaling of stress, strain or elastic moduli. The use of such
quantities however presumes the existence of a continuum, which contradicts the notion of fractal materials
as being inherently discontinuous. Dyskin et al. (1992) proposed a way to overcome this difficulty by intro-
ducing several equivalent continua each responsible for its own scale. Dyskin (1999a,b) extended this ap-
proach to self-similar structures and then modelled the crack-induced stress concentrations (Dyskin,
2002b) and the mechanical behaviour of the Earth’s crust (Dyskin, 2004). The present paper develops these
concepts further by considering scaling laws for materials with different types of inhomogeneities and stress
concentrators.

' We introduced this term to describe the general orientation of the fractal crack sketched by Yavari et al. (2002b) in diagrams.
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2. Multiscale continuum mechanics

The use of conventional quantities of mechanics-stress, strain, moduli etc. require the introduction of a
continuous medium. Since there are no continuous materials in nature, the continuum approximation is
based on the introduction of the volume element (elementary volume or representative volume element,
e.g., Nemat-Nasser and Hori, 1993) of a certain size, H, satisfying the following double inequality (e.g.,
Scipio, 1967; Batchelor, 1974; Hunter, 1976; Dyskin et al., 1992; Krajcinovic, 1996; Jeronimidis, 2000):

< H<L (1)

where [ is the characteristic size of the material microstructure (e.g., the grain or defect size, the distance
between the microstructural elements, etc. If a number of sizes are involved, then / is assigned to the largest
one), L is the characteristic length of the variations of the external fields (e.g., the characteristic size of the
area under consideration, the wave length, etc.). The continuum mechanics quantities (macroscopic in the
spirit of the inequality (1)) essentially represent the microscopic quantities averaged over the volume ele-
ments of size H, Vy (e.g., Batchelor, 1974). Thus, if afj and 851. are stress and strain fields (not necessarily
continuous) at scale /, the stress and strain fields at scale H are given by

1 1
H _ ! H _ N
% (X) N V_H /VH O'[j(X - t)dV” K (X) - Vi /VH bij(x - t)th (2)

As prescribed by the first part of inequality (1), the volume elements V' are supposed to be much larger
than the microstructural elements such that they are representative of the microstructure (the structure
at scale /). On the other hand, the second part of the inequality (1) makes the volume element size asymp-
totically infinitesimal as compared to the characteristic dimensions of the region under study such that the
variations of the studied quantities over the volume element size can be neglected (e.g., Scipio, 1967; Hun-
ter, 1976). Thus, in the macroscopic description associated with the size L the material is replaced by a con-
tinuum, while the volume element size H plays the role of the resolution of the continuum model (e.g.,
Krajcinovic, 1996) when the results are interpreted in terms of the original material with the microstructure.
Consequently the material is replaced with a continuum whose behaviour models the behaviour of the orig-
inal material at the scale H (Fig. 1). Correspondingly, the constitutive properties of the continuum will
specify the relationship between the averages over the volume elements the parameters of this relationship
being the effective characteristics.

Usually in classical continua, the size H does not explicitly appear in the equations, however it is to be
reckoned with when the results of the modelling are interpreted in terms of the behaviour of the original
material. It might also enter through, for example, fracture toughness (in fracture mechanics considera-
tions). It is present in Cosserat, high gradient or non-local continua. We will call the corresponding equiv-
alent continuum, the H-continuum.
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Fig. 1. Continuum modelling of materials with microstructure by the introduction of an averaging volume element.
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Fig. 2. Multiscale modelling: material with multiscale structure is modelled by a sequence of continua characterised by different
averaging size.

There are a number of cases when materials contain a multiscale hierarchical structure ranging up to the
scale of consideration, L such that one cannot choose a volume element size H satisfying (1). The situations
of this kind arise when the scale L is relatively small (e.g., in microelectronics). At larger scales these struc-
tures include biomaterials (Jeronimidis, 2000) and the Earth’s crust (e.g., Jaeger, 1979; Cuisiat and Haim-
son, 1992). Such materials can be modelled by a set of continuous media each characterised by its own
scale. Formally it can be done by introducing a set of volume elements of different sizes (e.g., Dyskin
et al., 1992; Jeronimidis, 2000). Volume elements of each size, H, define a continuous medium of scale
H, the state of the medium being determined by stresses and strains averaged over the H-volume elements
(Fig. 2). The H-continuum replaces the material with a material possessing modified microstructure in which
only those microstructural elements present that have characteristics sizes greater than H.

In general, the relationship between the continua is complex, especially in the case when there is not en-
ough clearance between the scales (condition / < L is not satisfied) such that each continuum cannot be
obtained by averaging the state variables of smaller scales as prescribed by Eq. (2). There is however a case
when this relationship can easily be obtained. This is the case of materials with self-similar microstructure,
i.e. the macrostructure that does not posses a characteristic length. Such a microstructure is indeed an ab-
stract concept which can only be used to model some real materials at most within a certain range of scales
between the lower and upper cut-offs (see Dyskin, 2004 for other restrictions). In the limit H—0 one could
obtain a description of a fractal material of the kind proposed by Panagouli (1997) and Panagiotopoulos
and Panagouli (1997). However, in many cases, especially in view of the presence of the lower cut-off, a
whole range of continua is needed as described in the following section.

3. Continuum mechanics of materials with self-similar microstructure

Let the material’s microstructure be self-similar such that there is no characteristic size in the microstruc-
ture. This means that there is no preferential choice in values of H for the modelling continua. Therefore,
such a material should be modelled by a continuous set of continua with the volume element sizes, H
assuming all values, Fig. 3. In this case, all continuum quantities should also be functions of scale, > H.

2 Rodionov et al. (1989) suggested to associate the scale with the fifth dimension added to the conventional three spatial and a
temporal ones. It should be noted that in the present analysis the fifth co-ordinate is so-far an index pointing to the modelling continua.



A.V. Dyskin | International Journal of Solids and Structures 42 (2005) 477-502 483

H A
a
>
a +
o | | .
a3t
A un | W | nn
a a9/
b — 5
HH—HH——HA—HH > >
X - -
Fractal material Multiscale continuum model

Fig. 3. The concept of multiscale continuum modelling. The fractal material is illustrated by a Cantor set. It is modelled by a
continuum of continua such that on top of the special coordinates (the x-coordinate in this illustration) a new coordinate H (scale) is
introduced. At a certain scale only the objects with the sizes greater than that scale can be recognised. Three such scales, @, a/3 and a/9
are shown.

Among all quantities the simplest are the uniform ones, i.e. the quantities that are independent of spatial
coordinates. As an example, consider an H-continuum and remove all the features of larger scales. If this
continuum is then homogeneous (i.e. the distributions of the smaller scale features are statistically homo-
geneous), the characteristics of the H-continuum will only be functions of H. The quantities that are pos-
itive functions of scale (or, generally, functions of H of constant sign) only are represented by power
functions, f{H)oc H*, according to the general theorem (e.g., Barenblatt and Botvina, 1980; Gelikman
and Pisarenko, 1989; Zosimov and Lyamishev, 1995). > This implies that in the case of materials with
self-similar microstructure the transition from one continuum to another is determined by power laws.

In particular, if the modelling continua are linearly elastic, the case considered hereafter, the 6 X 6
symmetric matrix of general anisotropic moduli or compliances should have scaled as C;;(H) « H ;; where
i,j=1,...,6 and o; could be thought of as 21 generally independent constants. 4 However, the elastic mod-
uli form a tensor and it is this tensorial property that is so restrictive that reduces the number of exponents
to one, as explained in the following section.

4. Scaling laws for tensorial characteristics

The fact that the tensor components have to change with the coordinate rotation in accordance with a
certain rule imposes further restrictions on the scaling laws. Consider, for the sake of simplicity a Cartesian

coordinate set (x,x2, x3). Suppose a tensor T (H) oc H** where i, j, k.. =1, ..., 3. When the coordinate
set is rotated with a matrix r;, the new components of the tensor will be.
T;jkm =TialjmVin - - - T ... T;jk = :}jkaﬂi/k...’ Timn... = tijk.NHaI"m'" (3)

3 Usually a condition of continuous differentiability is imposed on f{ H). Gelikman and Pisarenko (1989) relaxed this condition by
demonstrating that any function of H only (not depending on a parameter of length) bounded on an interval [H,, H,] is a power
function. Consequently, it is infinitely differentiable for all H > 0.

4 The matrix of elastic moduli is symmetric and positive definite which already poses some restrictions on the exponents. Indeed, the
entries of such a matrix can be represented as Cj( H) = u,-j(C,-Cj)'/ 2 i, j=1,..., 6, Tshernykh (1988), where the generalised Poisson’s
ratios, p;, are bounded. Therefore, p;;, are trivially scaled the corresponding exponents being equal to zero; only the moduli, C;, are
scaled non-trivially. This implies that out of 21 elastic constants of general anisotropic tensor of elastic moduli or compliances not more
than 6 can scale independently. Similar conclusion can be made about the compliancy matrix.

5 Hereafter the prefactors will be denoted by low case letters.
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Here summation over repeated indices is presumed.

The tensorial equation (3) establishes a linear relationship between power functions. However, power
functions with different exponents are linearly independent (Appendix A). Consequently, the following
proposition holds.

Proposition. For a tensor that depends on scale, H, as the only variable of units of length, all non-zero
components must scale with the same exponent, i.e.

Either Tijk... =0 or Tijk... x H* (4)

where o is a constant common for all i,},k, ...

Proof. Suppose the exponents in (4) assume p different values, oy, ..., o,. Then by grouping the terms with
the same powers one gets

P
> CH =0 (5)
q=1

where C, are the sums of the corresponding terms 7, xs- . -tjun.. ; One of these sums contains (or just con-
sists of) the component —#; . Because the power functions with different exponents are linearly independ-
ent (Appendix A),

C,=0,qg=1,...,p (6)

When another coordinate rotation, r, is chosen, only terms —;, could, in principle, change the power and
either migrate to another group or form a new one. Since the number of groups, p, is finite, while the num-
ber of possible different rotations r is infinite, one can always find a group that does not contain terms
—t;;. . for sufficiently large number of different rotations. Thus, one obtains a homogeneous system of
equations

VitVimVin « « - t/mn.“ = 0 (7)

where the summation is presumed over the values of indices /, m, n, . .. that belong to the group in question.
Since the components of the rotation matrix are linearly independent functions (they are combinations of
sines and cosines), ;,,... = 0.

Continuing in this way, one can eliminate all groups except the one containing —t;jkm. Therefore, all non-
zero components of the tensor will have the same power, the one that corresponds to this last group. This
finalises the proof. [

The proposition implies that all components of a tensor must have the same scaling law, which greatly
reduces the possible set of scaling laws that could be associated with a given self-similar structure. This is a
general statement applicable to all tensorial properties and quantities independent of the type of continuum
or its rheology. The following section explores this property in the application to the scaling of elastic
characteristics.

5. Scaling of elastic moduli and compliances

The restrictions imposed by the tensorial property (Proposition) imply that the tensors of elastic moduli
and compliances can be written, in both matrix and tensorial forms, as follows

Clj(H) :CUHy, AU(H) :Cllj[{/j7 l,]: 1,,6 (8)
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Cijkl(H) = Cijleia Aijkl(H) = aijleﬁa i,j k,1=1,2,3 (9)

where Cy; is the tensor of elastic moduli, 4y, is the tensor of compliances and, obviously, & = —§.

Therefore, the tensors of elastic moduli and compliances must scale isotropically. This property is inde-
pendent of the microstructure meaning that no matter what the anisotropy of the material is the scaling must
be isotropic. The anisotropy is accounted for by the prefactors, c¢;z; and a;;; of the power functions (9).

The particular values of «, f, ¢;x; and a;, depend on the material microstructure. In order to obtain a
system of equations for the determination of these parameters, consider a transition from a scale H to the
scale H + dH. Since this transition involves the inclusion of new structural elements in the definition of the
equivalent continuum, its compliances and moduli will be incremented.

The tensor increment, AA4,;(H), is determined by both the new structural elements and their interaction
with the existing elements, however its dependence of the scale should again be expressed by a power law:
Adiy(H) = AayjuH’ (11)

Taking into account that A (H + dH)- A (H) = fagx HP~'dH one can write ﬁa,-j/dHﬁ 1= AajH'. From
here, y = f—1 and

ﬁaijkz = Aaijkl (12)
or in matrix form

pay; =Aay, i,j=1,...,6 (13)
This is generally a system of 21 equations for 22 unknowns, ay1 , . . ., dgs and f (here the symmetry of matrix

a;; is taken into account). Since the prefactors for both compliances and the increments have the same units,
one of the compliance prefactors can be chosen arbitrarily, while the others and the exponent can be found
from (13). In the following sections this system will be further simplified for a special case of materials with
self-similar distributions of isolated inhomogeneities (voids, cracks, defects, inclusions, etc.) using the dif-
ferential self-similar scheme and solved for some special cases.

A similar system can obviously be written in terms of elastic moduli

[))Cl:]':AC,:/', l,]: 1,...,6 (14)

6. Self-similar distributions of inhomogeneities
6.1. General form

Consider a material containing self-similar distribution of inhomogeneities (voids, cracks, defects and
inclusions). Generally, the self-similarity means that the distribution law is expressed by a power function.
For instance the probability density function (“distribution function” in the statistical physics’ terminol-
ogy) has the form

SR) =25 (15)

where R is the characteristic size of the heterogeneity, w is a normalising constant.
The usual normalisation

/Oocf(R)dR =1
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leads to divergent integrals for any m. Therefore a self-similar distribution can only be viewed as an approx-
imation of the real one that ranges between lower and upper cut-offs, R,;, and R,.. Consequently, the
normalisation factor should depend on the cut-offs. We will determine it by assuming that the total concen-
tration of inhomogeneities, v, is specified. Then

/ " R F(R)AR = 1, (16)

With this normalisation, f{R)dR is the number of inhomogeneities of sizes from R to dR per unit volume.

Obviously, w—0 as Rax/ Rmin—00. Thus the self-similarity can be regarded as an asymptotic property in
the limit Rpyax/Rmin—00 With w being asymptotically very small. It will also be assumed that the total con-
centration of inhomogeneities, v, remains constant in this limit transition.

6.2. Self-similarity in narrow sense. Wide distribution of sizes

Eq. (15) gives the general form of the self-similar distribution, however, the effective characteristics are
controlled by the dimensionless concentration of inhomogeneities, N <R3 ) (e.g., Salganik, 1973), where N is
the total number of inhomogeneities per unit volume and () stands for averaging. One can suggest the def-
inition of self-similarity in narrow sense as a distribution in which the concentration of inhomogeneities is
the same at every scale. Consider a range of scales between R and nR, where n > 1 is a constant. The con-
centration of inhomogeneities in this range is

nR Nw d—m( 4—m __
o(R,nR) = N / RIRAR = Tt "= 1) when m 74 (17)
R Nwlinn when m=4
Obviously, the self-similarity in narrow sense is satisfied only for m = 4. Consequently, only the distribution
" -
L e Y 18

is considered hereafter.

Distribution (18) has an important property which underpins the suggested asymptotic procedure for
determining the scaling lays for the effective moduli. Consider the probability, P(n), that in a vicinity of
an inhomogeneity of size R, i.e. a region of size proportional to R, there are inhomogeneities of smaller
sizes, say from R/n to R, where n> I:

w 4—m( m—1 _
P(n) ~ B /Rj F(R)AR p—1 1R (n 1) when m#1 (19)

wRInn when m=1

When m = 4, which corresponds to distribution (18), P(n)~w(n’—1), i.e. it does not depend on the inhomo-
geneity size, R. Since (18) represents real distributions only asymptotically as Ry ./ Rmin—00 i.€. as w—0
(v; = const), for any n the value of w can be chosen small enough to make the probability negligible for
any inhomogeneity size. On the other hand for m # 4 the probability depends on R and therefore cannot
be made negligible for either large (m < 4) or small (m > 4) values of R.

This property suggests that for any inhomogeneity the probability to find nearby an inhomogeneity of a
similar size is asymptotically negligible; as w—0 (v, = const) only inhomogeneities of greatly different sizes
can be found there. Therefore, for any H-continuum the concentration of inhomogeneities for which the
inequality (1) is violated is infinitesimal and hence can be neglected. Correspondingly, averaging (2) can
be used to define the continua and with it the conventional theory of effective characteristics can be em-
ployed to derive the scaling laws.

Furthermore, the interaction between the inhomogeneities of similar sizes can asymptotically be ne-
glected; only interaction between inhomogeneities of very different sizes should be taken into account. In
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essence, the limiting transition w—0 ensures infinitesimal concentration of inhomogeneities at each scale
implying that their interaction can be neglected, with finite total concentration such that the interaction
of inhomogeneities is reduced to the inter-scale interaction. This property of the distribution is directly
equivalent to the assumption of wide distribution of sizes made by Salganik (1973), which makes it possible
to use the differential self-consistent method for calculating the effective characteristics.

7. Effective characteristics of materials with self-similar (in the narrow sense) distributions of inhomogeneities
7.1. General equations

The differential self-consistent method (Salganik, 1973) is based on the assumption that inhomogeneities
of equal size do not interact directly, while the interacting ones are very different in size. The interaction is
taken into account by considering each inhomogeneity alone in an equivalent continuum with the effective
characteristics determined by all inhomogeneities of smaller sizes. Thus the total values of effective charac-
teristics are obtained incrementally by adding at each step the contribution of non-interacting inhomoge-
neities considered in an equivalent continuum determined by the inhomogeneities already considered at
previous steps. Dyskin (2002a) showed that in the asymptotics of wide distribution of sizes of inhomogene-
ities the differential self-consistent method gives accurate values of the effective characteristics.

Consider Eq. (13). According to the differential self-consistent method, the compliancy increment A4,
i,j=1,..., 6,ateach scale is determined by the contribution of non-interacting inhomogeneities considered
in an effective continuum. This contribution is proportional to the concentration of the group of inhomo-
geneities at hand, wd H/ H since the inhomogeneities of the same scale do not interact due to their low con-
centration. System (13) can then be rewritten in the form

dH

Ayj(H +dH) = Ayj(H) + wS;j(A11, .. . Aser Ay - s Abgs - - - Abpo oo Alg) 2 (20)
or, using (9),
BaHP = wSy(Air,s ... Agsy Alys -y Ay - AN AR (21)

Here A}j, e ,Af/. are the compliances associated with the inhomogeneities, function Sj; is specific for the given
type of inhomogeneities and given distribution of their parameters. From the dimension considerations it is
clear that S;; is a homogeneous function of the first degree with respect to the arguments Alj,-,A,.lj, e 7Af.‘j.
There are two special cases for which Eq. (21) can be simplified. The first case is the case of homogeneous
inclusions made of one type of material, such that k = 1. The second case is when the parameters 4, . .. ,Af.‘i

ij?
are absent in (21). This is the case of voids (pores or cracks) and rigid inclusions.
7.1.1. Elastic inclusions made of the same material
In this case Eq. (21) reads
ﬁaleﬁ:WSij(Alla~--7A667A%17--~;Aé6) (22)

Using (8) and the fact that Sj; is a homogeneous function of the first degree, Eq. (22) can be rewritten as
follows

Bay; = wSi(ai, ... ac, A H ', ... Ay H ") (23)

Since the left part of (23) is independent of H and not all components of A}j are equal to zero, the exponent
p = 0. This results in the following equation

0:Sij(a“,...,a66,A}1,...,Aé6) (24)
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Furthermore, because the inclusions placed in the continuum with the same characteristics as the material
of inclusions do not produce any contribution to the effective characteristics the obvious solution of (24) is

1
The obtained result is transparent: the self-similar distribution of inclusions does not leave place for any

considerable amount of the original material such that the effective characteristics coincide with the char-
acteristics of the material of inclusions.

7.1.2. Voids and rigid inclusions
Taking into account the power dependence of 4; on H and the fact that according to the dimension
analysis S;; is a homogeneous function of the first degree, system (13) can be rewritten in the following form

ﬁa,-j:wSij(an,alz,...,a%), l',j=1,...,6 (26)
The corresponding system for elastic moduli reads
OCC[j:WAU(C“,CQ,...7C66)7 i,j: 1,...76 (27)

where the function A represents the contribution of inhomogeneities to the elastic moduli at each step of
the self-consistent method. It is also a homogeneous function of the first degree. Obviously, these systems
can also be expressed in terms of 4th rank tensors of compliances or elastic moduli.

Remarks

1. Functions wS; and wA; are essentially the traditional solutions for the effective characteristics in the case
of non-interacting inhomogeneities considered in a continuum of a corresponding type of anisotropy the
effective characteristics being replaced by prefactors and the concentration being replaced by w.

2. In isotropic case and some types of anisotropy, engineering constants are introduced (e.g., Lekhnitskii,
1968) that correspond to Young’s moduli and Poisson’s ratios associated with loading in different direc-
tions. Since there is a one-to-one correspondence between the components of tensors of effective char-
acteristics and the engineering constants, systems (26) or (27) can be rewritten in terms of engineering
constants. (It should be noted that because Poisson’s ratios, v;;, are bounded, their scaling exponents van-
ish.) In some cases this representation is convenient and will be used below.

3. Systems (26) and (27) resemble the systems that would be obtained if the symmetric self-consistent
method (e.g., Budiansky, 1965, 1976) is formally used for a material with zero compliances of moduli
and then the effective characteristics are replaced with the prefactors and concentrations are replaced
with w/B or w/a.

In the following subsections few examples of solution of system (26) or (27) will be presented.
7.2. Material with spherical pores

Consider a material with self-similar distribution of spherical pores (distribution (18)), where R is the
pore radius (larger pores are superimposed on the smaller ones). For an isotropic material with non-inter-

acting pores the effective moduli E, v, can be found using the formula (e.g., Mackenzie, 1950; Vavakin and
Salganik, 1978)

—vm) (9 + 5vn) .
7 — 5vy,

(1—v3)(1— 5vm)v

7 — 5vy

E=E, 1—271(1
(28)
V=, + 21




A.V. Dyskin | International Journal of Solids and Structures 42 (2005) 477-502 489

where E,, v, are the Young’s modulus and Poisson’s ratio of the original material, v = N <R3> is the dimen-
sionless concentration of pores (the porosity p = 4nv/3). Extracting the factors at the concentration, replac-
ing the latter with w and the Young’s modulus with prefactor, ¢, and taking into account that exponent for
the Poisson’s ratio vanishes one obtains the following system of scaling equations

1 —v)(9+5v
(1-9)©+5)

7—5v
(1—v2)(1—5v) " (29)

7—5v
Since w # 0 the only solution of (29) is

oae = —2me

0=2n

v=0.2, E=eH", a:—gnw (30)

where e is an arbitrary normalising factor.
7.3. Material with rigid spherical inclusions

Consider a material with self-similar distribution of spherical inclusions made of an infinitely stiff mate-
rial. For an isotropic material with non-interacting rigid inclusions the effective moduli E, v, can be found
using the formula (e.g., Vavakin and Salganik, 1978)

(1 =vm)(B—vm+52)
(1 +vn)(4—5vn)

(1= )1 = 2v0)(1 = 5v)

(4= 5vy) ’

E=F,|1+4r
(31)

V=vy+2n

where E,,, v, are the Young’s modulus and Poisson’s ratio of the original material, v = N <R3 ) is the dimen-
sionless concentration of inclusions. Using the same procedure as for the case of pores one obtains the fol-
lowing system of equations

(1=v)(3—v+5?)

oe = dnew
(I+v)(4—5v) (32)
B (I =v)(1 =2v)(1 = 5v)
0=2mw y—
Similarly, the only solution of (32) is
v=02, E=eH* a=(4/3)w (33)

where e is an arbitrary normalising factor.
7.4. Material with randomly (isotropically) oriented elliptical cracks

This is the case of a material containing self-similar distribution of cracks that are infinitesimal cats of
elliptical shape. The cracks are assumed to have the same aspect ratio, k,, and to be randomly (isotropi-
cally) oriented. In the case of isotropic material with non-interacting cracks the effective moduli E, v,
can be found as follows (e.g., Salganik, 1973)

E= Em{l —%n(l — V) [C1(vm) + Ca(vm) + 3C3(Vm)]v}

V= — %n(l — V2 {2(1 4 3vn) C3(vm) — [C1(vm) + Ca(vn)](1 = 2vim) }v

(34)
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Ci(v) = Kk Cov) = Kl
WE W VER) ik k) Y T (@ 1 DE®K) — K (k)
c3(v):%, P=1-k

Here E,,, v, are the Young’s modulus and Poisson’s ratio of the original material, v= N <R3> is the dimen-
sionless concentration of cracks, R is the major semi-axis of the ellipses, K(k) and E(k) are the elliptical inte-
grals of the first and second kind respectively. The scaling equations then assume the form

8n 2 v v v
o= _EW(I —V)[C1(v) + Ca(v) + 3C5(v)] (35)

0=2(143v)C3(v) = [C1(v) + C2(v)](1 — 2v)

By direct substitution one can see that one of the solutions of (35) is

v=0, a:?wQ (v) (36)

It is shown in Appendix B that Eq. (35) has no other solutions. Finally, the scaling law can be obtained in
the following form

v=0, E=eH" O(:_SgE]E;c)W (37)
For a special case of disk-like cracks, k, = 1, k =0, E(k) = n/2. Therefore
Odisk = —?w (38)
7.5. Self-similar distributions in two dimensional case
In the 2-D case the self-similar distribution in narrow sense will have the form
F=% (39)

where / is the characteristic size of the inhomogeneities, w is a normalising constant. It is assumed that in
real materials this size ranges between /,;, and /., and the normalisation based on a given total 2-D con-
centration €, is used:

Q

[max
_ 2 _
Q’ B / ! f(l)dl’ @ In lmax/lmin

Imin

(40)

It should be kept in mind that in this analysis the plane strain approximation corresponds to a body with
the length in the third dimension considerably exceeding /..., while the plane stress approximation corre-
sponds to a plate with the thickness considerably smaller than /.

Similarly to the three-dimensional case we will consider the asymptotics w—0 (€, = const). This will en-
sure that the inhomogeneities of the same scale and in infinitesimal concentration and hence do not interact
directly.
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7.6. Plane with circular holes

For a plane with non-interacting pores occupying a fraction p < 1 of the total area the effective moduli
in the approximation linear with respect to p read (e.g., Kachanov, 1993)

E=E,[l —3p], v:%—&- (vm—%>[1—3p] (41)

Representing the porosity via concentration Q = N(I*), where N is the number of pores per unit area, () is
the average square of the pore diameter, one has for the pore-determined increments of the moduli, AE and
Av:

1
AE = =3nQE,, Av=-37Q (vm — §> (42)

Taking into account that the scaling exponent for the Poisson’s ratio is zero (since the Poisson’s ratio is
bounded) Eq. (27) gives oe = —3nwe, 0 = —3nw(v — %) with the solution

v:%, E=eH*, o=3nw (43)

7.7. Plane with randomly oriented cracks

Plane with randomly oriented cracks (straight cuts) is isotropic. The expressions for effective Young’s
modulus, E, and Poisson’s ratio, v, in the case of non-interacting cracks are (e.g., Bristow, 1960; Salganik,
1973):

E=En[1-78], v=v[1-2¢] (44)

4

where Q is the crack concentration, E,, and v,, are the Young’s modulus and Poisson’s ratio of the material.
From here the corresponding components of tensor A; are A = —En/4, A, = —vn/4. Then, the scaling
equations are: we = —fwe, av = —F wv. Since according to the first of these equations o # 0, the only solu-
tion of the second equation reads v = 0. This yields

v=0, E=eH* o=-nw/4 (45)

7.8. Plane with two mutually orthogonal sets of cracks

Consider now a 2-D problem for a plane with two mutually orthogonal sets of cracks, Fig. 4. It will be
assumed that the set of cracks perpendicular to the x; axis is characterised by the distribution e,/ such that
the total distribution is w/F with the concentration factor = w; + w,.

In the asymptotics w—0 (Q, = const) the cracks of both systems of the same scale are well apart from
each other such that in a vicinity of a crack only very small cracks can be found. Therefore, the instances
when the cracks from these mutually orthogonal sets of cracks intersect can be neglected.

Vavakin and Salganik (1978) found the effective compliances for an orthotropic plate with a set of
non-interacting cracks aligned to one of the symmetry axes of the material. Generalising their formula
one obtains the effective compliances for an orthotropic plate with two sets of non-interacting cracks of
concentrations 2; and ©, normal to axes x; and x, (in a coordinate system xi, x, aligned to the symmetry
axes of the material):
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Fig. 4. A plate with two mutually orthogonal sets of cracks with the concentration factors w; and w, respectively. In the asymptotics
w—0 (Q, = const) occurrences of the crack intersection (indicated by an arrow) are rare and their influence can be neglected.

TT
Ay = A7+ 70, VAT AT+ AT, + 2 /AT AT

m T m m m m m
Ap =4y + 192\/1422(21412 + Ags + 2 A11A22) (46)
7 b
Agg =43+ 7.0, VAD2ATS + AT, + 2 /AT AT + ZQZ\/A‘I’“I (247, + A7 1 2 /AT AT
A, =AY,
Here AV}, 43, A}, Ag are the compliances of the material, such that the Hook’s law has a form: ¢&; =

Ao+ Ay "0, 0= A "o1 + Azp M025, £12=1/2 Age "1

The scaling equations can be obtained by replacing @, and @, with @, and w,, bringing A} to the left-
hand sides and then replacing 4; — A4} with fa; and, finally, replacing 4} with a; in the remaining parts.
The last equation in (46) reads fa;, = 0 such that a;, = 0. The first three equations yield the following scal-
ing equations

pa, = gwl\/all(aéé +2\/an1ax)
Paxn = ng \/a22(a66 +2y/anax) (47)
Bags = ng \/all (acs +2v/ariazn) + %0)1 \/022 (ass +2+/ana)

The only solution of these equations produces the following scaling laws:

T
Ay :ainﬁ7 B :E\/M

2 (48)
w [0)
ax = daj <—2> . age = 2an <—2>7 ap =0
()] ()]

It should be noted that as the concentration of one of the sets vanishes, say w,—0, the exponent and all
compliances but the normalising @, vanish. Thus the material degenerates to the one infinitely stiff in all
directions but one.

7.9. Remarks

7.9.1. Scaling laws for other effective properties
The described methodology can equally be used for determining scaling laws for other transport prop-
erties such as the thermal and elastic conductivity, diffusion, etc. As an example consider the determination
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of a scaling law for effective viscosity of a fluid with multiscale distribution of rigid spheres. The effective
dynamic viscosity 5 of a fluid of viscosity #,, with non-interacting rigid spheres has been found by Einstein
(e.g., Landau and Lifshitz, 1987):

0 nm[l +§c] (49)

where ¢ is the volumetric fraction of the spheres; its expression via the introduced above concentration

reads ¢ = (4n/3)v. The scaling equation reads: oy = IOT“wn. Its solution produces the scaling law for viscous

fluid with self-similar distribution of rigid spherical particles

1
n=nH"*, a:%w (50)

7.9.2. On the correspondence between the scaling exponents for elastic moduli and fractal dimensions

There have been attempts to relate mechanical properties of a material to its fractal dimension which is a
geometric property (e.g., Balankin, 1992; Bazant, 1993; Mosolov, 1993; Carpinteri, 1994; Cherepanov et al.,
1995). Amongst the materials considered, the material with pores has a fractal dimension less than three.
Indeed the box counting dimension of the material with self-similar distribution of spherical pores is
D=3- %”w This corresponds to the scaling exponent « of the elastic modulus (30) D = 3 + 2.

Materials with cracks have fractal dimension exactly equal to three since cracks have no internal volume.
Thus the fractal dimension is independent of the distribution of inhomogeneities, while the scaling expo-
nents are determined by the concentration factors w. Thus generally there is no relationship between the
dimension and the mechanical scaling laws.

7.9.3. Values of Poisson’s ratio

Poisson’s ratio being a bounded quantity has a zero exponent and for that reason remains constant
across the scales. A reason behind the constant values of Poisson’s ratio is that a material with self-similar
distribution of inhomogeneities formally possesses infinite total concentration of inhomogeneities at any
scale. From this point of view, the values of Poisson’s ratios are limiting values as the concentration tends
to infinity. Interestingly, for the case of cracks the Poisson’s ratio vanishes, while for pores or rigid inclu-
sions it is 0.2 (in 3D). One can expect that randomly oriented ellipsoidal pores or rigid inclusions should
yield intermediate values.

8. Scaling of stress fields

The stress field being a tensorial field should, according to Section 4, scale with a scalar exponent which
in general case can depend upon the location. Thus

ag(x) = s (x)H"™ (51)

In each continuum, the stress field must satisfy the equations of equilibrium which, in the case of the ab-
sence of body forces, read a7/ ,(x) =0, xcF”, where F is the subset of the H-continuum that covers the
points of the original fractal material F. Substituting (51) into the equations of equilibrium one has for
all scales

siji(X) +8(X)x,(x) =0, x€F (52)

We will call the material strongly self-similar if y ; = 0 such that y = const. In this case both the stress field

" . . o .
0;;(x) and its volumetric average (o;;) scale with the same exponent
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oy (x) = sy (X)H",  (oy)) = (syy)H" (53)

ij ij ) ij ij

Since, as pointed out by Carpinteri (1994), the average stress scales as <O‘ZI ) oc HP=% where D is the sec-
tional fractal dimension of the material, y = D,—2. Thus, the Carpinteri’s scaling law corresponds to the
strongly self-similar materials. It should also be noted that in the considered theory the stresses have con-
ventional units since the stress belongs to a continuum, while the scaling only corresponds to the transition
from one continuum to another.

9. Self-similar stress concentrators

When the self-similar material has stress concentrators without characteristic length, such as edge or
screw dislocations, concentrated force or semi-infinite crack, the induced stress fields will keep the power
scaling law of transition between the continua. Suppose that the material is isotropic, i.e. the prefactors
are isotropic (the scaling law is always isotropic, as explained in Section 3).

9.1. Dislocations

Consider a 2-D fractal material (e.g., a material with self similar distribution of inhomogeneities, such
for instance as pores or cracks) and place the dislocation at the origin of a polar coordinate frame (r, @).
Let the Burgers vector be, for instance, b = (b,0). Then in an H-continuum, in a sufficiently small vicinity
of the origin in which the probability of intersection with an inhomogeneity can be neglected, the stress
components have the form (e.g., Landau and Lifshitz, 1959):

o — off bE(H) sing o — bE(H) cos¢@

" 00 _47'5(1 —2) r e 4n(l —v?) r (54)

where E(H)x H*, v = const are the moduli of the H-continuum.

The radius of the vicinity of the origin where (54) is valid is obviously proportional to H. On the other
hand, H determines the resolution of the corresponding continuum. Therefore, as r—0 one has to transfer
to finer and finer scale, with Hocr— 0. Then, according to (54) one will observe an apparent non-conven-
tional stress concentration:

o oc ! (55)

One should emphasise that this is not a real stress concentration since the limiting transition r — 0 involves
transition through r-continua, while within each continuum the stress concentration is conventional, '

A similar situation can be observed for a screw dislocation with a Burgers vector b. The stress distribu-
tion in a cylindrical coordinate frame (r, ¢, z) is (e.g., Landau and Lifshitz, 1959):

ot = bEWH) 1
o An(l =) r

(56)

Again, within each continuum the stress concentration has a conventional r~' singularity, while the appar-
ent stress concentration across the scales is oocr® .

9.2. Concentrated force
In an H-continuum in a sufficiently small vicinity of the origin the stress distribution generated by a con-

centrated force F directed along z axis of a cylindrical coordinate frame (r, ¢, z) has the form (e.g., Timo-
shenko and Goodier, 1970):
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F z rz F z
% = Sl =) {U_ZV)R3_3R5]’ P =iy
(57)
_ F z 7 a F z rz?
i—‘:m_v)[“‘”)m” } %= "o [T p 3%

where R* = r? + 2%,
Here the stress distribution is independent of the Young’s modulus, hence the apparent stress singularity
coincides with the conventional one, R™2.

9.3. Semi-infinite crack

Consider a 2-D fractal material and place the tip of a semi-infinite crack at the origin of a polar co-
ordinate frame (r, ¢). Let the crack be loaded in a self-similar manner, i.e. without introducing a character-
istic length. (This can for instance be accomplished by considering a finite crack uniformly loaded and then
tending its length to infinity and the load to zero such that the stress intensity factors remain constant.)
Then in an H-continuum, in a sufficiently small vicinity of the crack tip in which the probability of inter-
section with an inhomogeneity can be neglected, the components of singular stress have the form (e.g., Sih
and Liebowitz, 1968):

Kf[flj (/)) + KHglj(

Gg(da 0) = N . Lj=12 (58)
fir=(1—sin2-sin32) cos 2
fro=(1+sing-sin32) cos?

fi2 =sin% - cos2- cos?

_ @ 30) «in @
gn =—(2+cos?-cos?)sin
&»n :sin%cos%cos%”
g1, = (1 —sin%-sin32) cos ¢

where K{' and K{I are the stress intensity factors (SIFs) of Modes I and II respectively,

Although expression (58) formally does not contain the Young’s modulus, the interaction between the
crack and the inhomogeneities leads to dependence of the stress intensity factors upon the scale. This
dependence, in the case of the self-similar distributions of inhomogeneities in narrow sense can be obtained
as follows.

Suppose that a crack is placed in a continuum material with added inhomogeneities. We compare two
situations: the crack in the original material without microstructure and the crack in an effective continuum
that models the material with microstructure. A crack under load is characterised by mutual displacements
of the opposite faces. Placing the crack in the effective medium affects the displacement distribution. The
same displacement distribution can also be achieved for the crack in the original material if certain equiv-
alent tractions are applied to its faces. These equivalent tractions represent an average effect of interaction
with the inhomogeneities, the averaging being conducted over all positions of the inhomogeneities. The
equivalent tractions can be found by comparing the mutual displacements of the crack in the effective med-
ium with those of the crack in the original material. Then by considering the crack in the original material
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Fig. 5. A tip of semi-infinite crack in H-continuum (a) and /-continuum (b). In both cases the vicinity of the crack tip is chosen small
enough to ensure that the probability of an inhomogeneity getting close to it is negligible.

to be loaded by a superposition of the original load and the equivalent tractions, the average SIFs © can be
determined. This is equivalent to the following procedure (see Dyskin, 2002a for details): (i) compute the
displacement discontinuity at the crack, assuming it to be in the effective medium under the original load
and then; (ii) compute the SIFs from the obtained displacement discontinuity considering the crack contour
as being in the original material. (This method was verified by Dyskin, 1985, for the 2-D elastic problem of
interaction between a crack and parallel microcracks by the comparison with the results of the explicit cal-
culation of the pairwise interactions.) In particular, the average SIF will have the form

Here E,,, and K7 are Young’s modulus of and the SIF for the crack in the original material, i.e. without the
interaction, E is the effective Young’s modulus.

Consider now the fractal material and the crack in two continua characterised by scales H and 4, h < H.
Introduce the vicinities of crack tip of sizes r,oxh and ryoc H in the respective continua, Fig. 5. Let these
sizes be sufficiently small such that the probability of an inhomogeneity getting close to each of these vicin-
ities is negligible. Then formula (59) can be used with the H-continuum playing the role of the original
material (Eg—E,,) and the A-continuum playing the role of the effective material (E,—FE). As a result,
Kt/K ~ Ey/E, = (H/h)", where o is the scaling component for the elastic moduli.

This leads to the conclusion that the SIF should scale as follows

(Ki(H)) ~ H™ (60)

where « is the scaling exponent for moduli. Since the scaling of elastic moduli is always isotropic, the scaling
law (60) also holds for anisotropic materials (i.e. materials with anisotropic pre-factors).

Repeating the reasoning of Section 9.1 one can conclude that the stress distribution will have an appar-
ent non-conventional stress singularity

oo 12 (61)

Once again, within each continuum the crack tip produces the conventional square root singularity. How-
ever, when the point of observation approaches the crack tip and the corresponding transition from one
scale to a finer scale is considered, the stress concentration apparently assumes the power singularity with
a different exponent, 4 = 1/2 + «. This exponent is determined by the scaling law of the elastic modul, i.e.
by the material microstructure (but not the other way around, as conventionally assumed in fractal fracture
mechanics, where the stress singularity is inferred from the fractal dimension of the fracture surface, e.g.,

¢ Usually the crack propagation is supposed to be determined by extreme SIF values, Kachanov (1991). Nevertheless, in some
important cases the averaging is relevant. This is for example the case of stable crack growth: a small increment in crack size does not
result in failure, therefore a number of increments are required to let the crack grow sufficiently to cause a noticeable effect of
deformation or fracture. Thus in considering an average increment of the crack growth one can express the criterion in terms of average
SIFs.
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Mosolov, 1993; Carpinteri, 1994; Borodich, 1997). After all, the stress concentration at the crack tip is the
cause, while the crack propagation resulting in the production of the new surface is the effect.

10. Crack growth in self-similar materials

The apparent stress singularity allows the determination of the fractal dimension of the fracture surface
in the spirit of e.g., paper by Gol’dstein and Mosolov (1991). The energy release rate reads

dU/dt < K} /E oc t7* (62)

where 7 is an increment in crack propagation. Comparing (62) with the energy required to produce a frac-
ture increment of sectional fractal dimension Dy, occupying unit length, Es~t”! one can obtain the fractal
dimension of the fracture surface profile: ’

D=1-30=5/2-3. i=1/2+u (63)

Similarly, in 3D, comparing (62) with the energy required to produce a new fracture surface of fractal
dimension D, occupying unit area, E,~t”"2 one has

D=2-30=7/2-34, i=1/2+u (64)

Relations (63) and (64) are different from the usually obtained (e.g., Gol’dstein and Mosolov (1991) since
scaling of the modulus has also been taken into account in (62). It should be noted that in this case the
dimension of the fracture surface is determined by the scaling law of the elastic moduli, i.e., ultimately,
by the material microstructure.

11. Discussion and conclusion

The main idea of the proposed approach is to model mechanics of fractal materials—the materials which
are nowhere continuous—by a continuum sequence of continua of increasing scales each determined by its
own size of the averaging volume element. Thus, such quantities as stress, strain, moduli, etc. are defined in
each continuum in a conventional way. Then in self-similar materials the transition between the quantities
belonging to different continua is represented by power laws with exponents determined by the
microstructure.

Physical laws must be invariant with respect to coordinate rotations, hence the physical quantities must
have the tensorial property, i.e., their components undergo certain linear transformations as the coordinate
frame rotates. In therms of self-similar scaling, this is a very restrictive property because of linear independ-
ence of power functions with different exponents. As a result, the scaling laws for tensors are always iso-
tropic (the same exponent for all non-zero components) with only prefactors capable of accounting for
anisotropy. This allows the determination of the scaling laws for effective elastic characteristics in materials
with self-similar distributions of pores, cracks and rigid inclusions. The obtained scaling exponents do not
necessary relate to the material fractal dimension.

The scaling exponent for the stress field is generally non-uniform. However, in the case of strong self-
similarity it is uniform, coincides with the one for the average (nominal) stress and is controlled by the sec-
tional fractal dimension of the material.

The stress concentrations produced in a sufficiently small vicinity of the kernel of a linear dislocation or
the point of application of a concentrated force have, within each continuum, conventional singularities.

7 This analysis was proposed by Dyskin (2002b), however, there was a misprint in the corresponding formula of that paper.
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However approaching the dislocation kernel also involves transition to finer continua which leads to appar-
ent non-conventional singularity o oc H*~!, where « is the scaling exponent for the elastic moduli. Similar
situation can be observed in a vicinity of a tip of a semi-infinite crack. In this case the apparent non-
conventional singularity is caused by the interaction between the crack and microstructural elements of
the material. If the crack propagates, the exponent for this singularity determines the fractal dimension
of the future fracture surface.

The above shows that the self-similarity is such a restrictive property that non-trivial results are attain-
able in quite general situations. This suggests that not all real materials can be represented as self-similar
even if some quantities scale close to the power law. It is important to determine the necessary and sufficient
conditions of self-similar modelling, its accuracy and to identify the classes of systems for which this mod-
elling is applicable.
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Appendix A. Linear independence of power functions
Lemma. A set of power functions {x“}, i= 1, ..., n with different exponents a; is linearly independent.

Proof. When ¢; are integer this property is well known.Consider the general case, when a; are arbitrary real
numbers. The linear independence means that the equation

Zn: Cixi = (A1)
i=1

can have only trivial solutions, C; = 0. In order to demonstrate this let multiply (A.1) by x°~! and integrate
the sum over (0, 1) assuming that » > 1 — min,a;. This gives

n C
— =0 A2
2 i (A2)
By assigning different values, by, .. ., b, to b one obtains from (A.2) a homogeneous system of equation with
respect to C;.
n C
=0, j=1,... A3
; a; + bj ) ] ) ,n ( )

The determinant of this system

1 1
ay + b ay +b,
Dn: (A4)
1 1
a, + b, a, + b,

can, following Achieser (1956) be computed as follows.
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First, by extracting the common denominator, the denominator can be expressed as

P
D=t (A.S)
Hz:j:l (a; + b))
where P, is a polynomial in «y, ..., a,, by, ..., b, of degree n(n—1).

Second, one observes that this polynomial vanishes when either a; =a; (two equal rows in the
determinant) or b, = b; (two equal columns). Therefore, it is divisible by

Qn = H (ak + a/)v R, = H (bk + bl) (A6)
1<k<i<n 1<k<i<n
Both these quantities are polynomials of degree n(n—1)/2. Hence,
Pn = fanan (A7)
where «,, is a constant independent of ay, ..., a,, by, ..., b,.

The final step is the determination of «,,. Obviously, o; = 1. Then, multiplying the last row in (A.5) by q,,
tending it to infinity and then tending b,, to infinity, one obtains D,_;. On the other hand, substituting (A.7)
into (A.5) and applying the same procedure (i.e., multiplying by «,, tending it to infinity and then tending b,,
to infinity) one obtains a, D,,_,/a,_; One can conclude from here that a,, = 1. Finally,

_ [icrarcnla +an) I o, (b + b2)
! [Ti,=i(a + b))
when a; # a; and b, # b, The first inequality is satisfied by assumption, the second is satisfied by the
choice of by, ..., b,. This implies that system (A.2) has only trivial solution, which completes the proof.

£0 (A.8)

One can also offer another, shorter proof. Indeed, by introducing the function

C(a) = Z Cid(a — a) (A.9)
=1
where d(x) is Dirak’s delta-function, and replacing x with exp(—p) one can rewrite (A.1) as
/ C(a)exp(—ap)da =0 (A.10)

The integral is the double Laplace transform of a generalised function C(a). Since the Laplace transform is
a one-to-one correspondence, C(a) = 0. This implies that C; =0, which finalises the second proof. [

Appendix B. Proof that (36) is the only solution of system (35)

Suppose there is another solution such that v # 0. The second equation in (35) can be rewritten in the
form

10
G0+ o) — 2630 =11 (B.1)
Using (34) one obtains
2 —
Ci(v) + Ca(v) = C3(V)ﬁ (B.2)

where
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Substituting (B.2) into (B.1) one gets the following equation

V(9 — 8v + 2v4 + 6v’4)
(I =v+v24)(1 —2v)

=0 (B.4)

In order to determine whether this equation has non-zero solution Eq. (B.3) should be analysed. Using the
definitions complete elliptical integrals it can be directly demonstrated that

E(k) = kK2K(k), K(k) = E(k) (B.5)
Therefore, 4 > 0. On the other hand

1 k. ) PSP

1A= ij‘z(k) [(1+Kk)E(k) — 2k.K (k)] (B.6)

As a result 0 < 4 < 1/4. Using this property it is easy to see that denominator in (B.4) cannot vanish and
9—8v + 2vA + 6v24 > 0. Therefore, v = 0 is the only solution of (B.1) and of the system (35). [J
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